If it's not what You are looking for type in the equation solver your own equation and let us solve it.
78x^2+160x-100=0
a = 78; b = 160; c = -100;
Δ = b2-4ac
Δ = 1602-4·78·(-100)
Δ = 56800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56800}=\sqrt{400*142}=\sqrt{400}*\sqrt{142}=20\sqrt{142}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-20\sqrt{142}}{2*78}=\frac{-160-20\sqrt{142}}{156} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+20\sqrt{142}}{2*78}=\frac{-160+20\sqrt{142}}{156} $
| -3=z-13 | | -d+2d=-10 | | 65*x-22*(8.7-x)-15*((8.7/2)-x)=0 | | 54x^2+246x-120=0 | | 65*x-22*(8.7-x)-15*(8.7/2-x)=0 | | 16x-6x=20 | | 32-x=56 | | A+3=-13+3a | | 7x+8.12=3x+15 | | w/4-1.4=-7.8 | | 65*x-22*(8.7-x)=0 | | 5+4x=331 | | 85*x-24*(8.7-x)=0 | | -0.6w=-0.6w+-0.4 | | x÷8=8 | | 425-y=2y-10 | | 10x-5=3x-9 | | 217-u=271 | | 2.1+0.5x=0.6 | | 2k-3+3=-16+6k | | 0.4+10.3=x-4.4 | | 3=5+r/7 | | -6x+5-2=-2x-15 | | (x-2)=3x-6 | | 23−5k=13 | | 12x-(4x+5)=-5(6-2x)-7x | | t-26=4 | | 3(3+6x)-2=115 | | 23x-7x=10 | | x^2+2x=x^2=24 | | 9x^-2/3=16 | | 314x=1570; |